CCD机器视觉检测
视觉检测
视觉检测就是用机器代替人眼来做测量和判断。视觉检测是指通过机器视觉产品(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。是用于生产、装配或包装的有价值的机制。它在检测缺陷和防止缺陷产品被配送到消费者的功能方面具有不可估量的价值。
一、结构
一个机器视觉系统包括以下三大块:
1、照明
2、镜头
3、相机
二、图像采集
图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。
比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。
视觉处理器
视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。由于采集卡可以快速传输图像到存储器,而且计算机也快多了,所以视觉处理器用的较少了。
三、应用现状
在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。SMT表面贴装:SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等;再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路制造设备、元器件成型设备、电子工模具。机器视觉系统还在质量检测的各个方面已经得到了广泛的应用,并且其产品在应用中占据着举足轻重的地位。除此之外,机器视觉还用于其他各个领域。2000年来,零售商和消费者对可导致健康风险或增加零售商成本的不合格产品来越没有忍耐力。如果视觉检测机制正确执行和管理,就可成为强大的工具用于:
-保护制造商、零售商和消费者的利益,不会出现贴错标签和无法识别过敏原标签的包装
-有助于保护品牌声誉
-遵守行业最佳实践指南和零售商标准
视觉检测效果
研究显示,65%的消费者在购买产品时会参考包装。如果包装贴错标签或标签被损坏,隐藏潜在的有害成分,这会导致产品召回、罚款、甚至是法律诉讼。有调查表明食品行业中55%的召回都是由不正确的标签所导致的,食品过敏原就是一个十分普遍的例子。
视觉检测是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。自起步发展至今,已经有20多年的历史,其功能以及应用范围随着工业自动化的发展逐渐完善和推广,其中特别是目前的数字图像传感器、CMOS和CCD摄像机、DSP、FPGA、ARM等嵌入式技术、图像处理和模式识别等技术的快速发展,大大地推动了机器视觉的发展。简而言之,机器视觉解决方案就是利用机器代替人眼来作各种测量和判断。
发展历史
1950年代,图像处理成为机械工业的一个检测项目,视觉检测作为一项生产检测机制诞生了;
1960-1970年代,导弹和航天工业兴起,人工检测无法实现对导弹等精密工业品的检测,视觉检测机开始出现;
1980年代,机械视觉检测被应用于当时方兴未艾的半导体工业;
1990年代,智能相机的出现使视觉检测技术得到飞速发展,推动了制造业的视觉应用;
2000年,数码相机的发明和普及,使得老式的帧式抓取相机被淘汰,视觉检测的成本大大降低;
2005年,梅特勒-托利多公司推出了世界上首台人机界面良好的视觉检测机。从此,工人在生产线上操作视觉检测设备就像操作电脑一样简单。
今天,欧盟、美国等国家已通过法规明确规定了产品制造商应该进行的视觉检测项目及标准。国内外也有很多厂商设计出了高度智能的视觉检测解决方案。越来越多的企业也开始在自己的生产线上安装视觉检测系统。总之,视觉检测技术和机制已经得到了广泛的推广。
工作原理
视觉检测涉及拍摄物体的图像,对其进行检测并转化为数据供系统处理和分析,确保视觉检测过程符合其制造商的质量标准。不符合质量标准的对象会被跟踪和剔除。掌握视觉检测系统的工作原理对评估该系统对公司运作所做的贡献十分重要。必须充分在设置视觉检测系统时所涉及到的变量。正确设置这些变量,采用合适的容差,这对确保在动态的生产环境中有效而可靠地运行系统而言至关重要。如果一个变量调整或设计不正确,系统将连续出现错误剔除,证明使用不可靠。